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Abstract—Integrating multiple subsystems with different levels
of criticality is a well established concept in the automotive
domain. To ensure proper temporal and spatial isolation, a highly
privileged software component is installed to orchestrate the
subsystems. VOSYSmonitor is such a solution, it enables the
co-execution of two operating systems on a single System on
Chip - A rich operating system, such as Linux, along with a
safety critical operating system, fully isolated from each other
using ARM TrustZone. But if we take a closer look at specific
automotive scenarios (e.g., “displaying warning signs”), reveals
that an interaction of the two operating systems might be
desirable.

In this paper we address this challenge. We present the
implementation of a low-latency inter-world network channel.
It is built around already existing primitives in both worlds,
only implementing the physical layer of the network channel.
This ensures a low complexity, meaning only minor modifications
have to be made to both operating systems. To prove the
feasibility of our design, we built a full prototype that enables
a network communication between the two operating systems,
while ensuring a proper encapsulation of the safety critical
operating system. To validate low reaction times, the design
is evaluated with respect to network latency. To complement
the measurements, we also performed a number of bandwidth
measurements. Finally, we thoroughly discuss potential threat
scenarios arising from the network link and how they can be
addressed with appropriate countermeasures.

I. INTRODUCTION

The Automotive domain is currently undergoing a paradigm
shift. Manufacturers alter their system architectures from hav-
ing a single processing unit for individual subsystems, towards
the integration of multiple subsystems with a full spectrum of
different safety requirements. In-Vehicle Infotainment systems
for example, reside on the very low end of this criticality
spectrum and the car control unit resides on the very high end.
All are integrated on a single Electronic Control Unit (ECU),
by capitalizing on the performance of powerful heterogeneous
multi core platforms.

But, these automotive mixed-criticality systems [1] pose
new challenges on the system software [2]–[4]. To accommo-
date for the increased complexity, automotive manufacturers
leverage alternative software architectures to execute several
software stacks concurrently. In this context, a highly privi-
leged orchestrating entity provides full spatial and temporal
isolation of the different software components. Virtualization
plays a key role in this trend, but off-the-shelf virtualization
solutions (e.g. Xen [5], KVM [6], Hyper-V [7], etc.) are more
trimmed towards performance rather than the maximum level

of isolation (cf. [8]–[10]). Therefore, they do not provide
the level of temporal and spatial isolation required by the
automotive domain. Also, with regards to certification (e.g.
ISO 26262 [11]) these conventional solutions are lacking be-
hind for the above reasons. Instead, automotive manufacturers
use highly specialized certified kernels [12]–[14] to fulfill
the demanded safety requirements. These solutions are very
similar in their design (e.g., leveraging hardware processor ex-
tensions such as ARM TrustZone [15], [16] or ARM VE [17]),
but have more predictable timing characteristics, than their off-
the-shelf counter parts.

Running on top of these privileged components, the General
Purpose Operating System (GPOS) Linux found a widespread
adoption due to its versatility and ability to produce a rich user
interface for the In-Vehicle Infotainment (IVI) system. It is
accompanied by a Special-Purpose Operating System (SPOS),
which handles mission-critical tasks (e.g., displaying speed,
engine torque and/or warning signs).

In this context, both components serve a dedicated purpose,
without the perceived need of interaction. However, a closer
look at specific scenarios, reveals that an interaction between
systems is required. Then, the strict spatial isolation — initially
one of the key requirements of the said system architecture
— must be thinned. In this context, establishing a network
link between the components raises two questions. First, can
the latency requirements from the critical application, be
fulfilled? Second, can the integrity of the critical application
be upheld, while efficiently exchanging information with the
non-critical system?

In this paper these open research questions are addressed.
We present the design of an architecture that enables a
low-latency network link between SPOS and GPOS, taking
safety and security requirements into account. Its feasibility
is demonstrated with a full prototype implementation called
VOSYSVirtualNet. The prototype is based on a highly
privileged firmware called VOSYSmonitor [13], that runs in
the monitor mode of modern ARM-based System-on-Chips
(SoCs). The communicating endpoints of VOSYSVirtualNet
are a Linux running in the non-secure world and a FreeRTOS
running in the secure world. We verify the low-latency with
a number of benchmarks and put the results into context
by comparing them against a reference system. Finally, the
security concerns are addressed by referring to the safety
and security aspects that are included in the design of



Fig. 1: The hierarchical processor modes of an ARMv8
processor and the orthogonal security concept introduced with
ARM TrustZone, that splits the processor modes into two
worlds (“secure” and “non-secure”).

VOSYSVirtualNet.

The rest of the paper is structured as follows. Section II
provides preliminaries and background information. The ar-
chitecture of VOSYSVirtualNet is presented in Section III
and evaluated in Section IV. Then, security implications of
our design are discussed in Section V, while related work
is presented in Section VI. Finally, we conclude and present
future work in Section VII and Section VIII, respectively.

II. PRELIMINARIES & BACKGROUND

This section describes some background that is crucial for
understanding the rest of the paper without requiring the reader
to be a priori familiar with these details.

A. ARMv8 Exception Levels

Commonly an ARMv8 application processor features four
exception levels. Figure 1 depicts the hierarchical system
layout. Whereas, user applications are executed in EL0, the
least privileged mode, while EL1 usually hosts the GPOS
kernel, e.g. Linux. EL2 is intended to be used by a hypervisor
component (e.g. KVM, Xen, etc.). Software executing in this
mode is able to install trap mechanisms for certain EL0 and
EL1 instructions. Also, a staged paging mechanisms allows
software in EL2 to convert the pages translated by EL1 once
more. Finally, there is EL3 that usually hosts a firmware
to enable the interaction between “non-secure” and “secure
world”. Further details on this are given in the next section.

B. ARM TrustZone

In 2004 ARM introduced a new security extension called
TrustZone [15], [16]. The separation concept operates orthog-
onal to Exception Levels (ELs) and splits the processor state
into two worlds (secure world and non-secure world). Along
with the separation concept, ARM also introduced a new
processor mode “Secure Monitor Mode”, which resides in the
highest exception level (EL3). Through the implementation
of a new processor instruction, the smc (Secure Monitor
Call) [18], non-secure components are able to request services
from a component running the secure world.
Moreover, the isolation between the worlds is enforced in

combination with other cooperating hardware peripherals. A
TrustZone compliant memory controller announces the cur-
rent security state (“secure” or “non-secure”), on every bus
transaction, for devices to handle the request accordingly.
The Intellectual Property (IP) core TZC-400 [19] enables the
configuration of certain ranges of physical memory as secure,
preventing non-secure world accesses. Finally, the standard
ARM interrupt controller (GIC) supports the classification of
interrupt sources into groups, allowing them to be routed to
either the secure or non-secure world.

C. VOSYSmonitor

VOSYSmonitor is a highly privileged software component
that runs in the Secure Monitor mode (EL3). It enables the
native concurrent execution of two operating systems, such
as a safety critical RTOS along with a GPOS. The execution
of both 32-bit and 64-bit applications is possible and their
isolation is ensured by the means of TrustZone.
Since VOSYSmonitor runs in EL3, the Normal world can
still opt for a virtualization solution, such as Linux/KVM,
which leverages the ARM VE to instantiate multiple non-
critical Virtual Machines (VMs). Yet, the RTOS, running in
Secure world, is completely isolated from these applications
executing in the non-secure world.
Hardware exception mechanisms, such as interrupts, are used
in order to ensure an efficient context switching between
the two worlds. Additionally, both Operating Systems (OS)
can voluntarily give up their execution time by invoking the
smc instruction. VOSYSmonitor keeps tight control over these
exceptions to ensure a proper operation of each world.

III. VOSYSVIRTUALNET ARCHITECTURE

VOSYSVirtualNet is embedded into an already existing
software stack and as such establishes a network link between
two components running on top of VOSYSmonitor. An exem-
plary system architecture is shown in Figure 2. The non-secure
world hosts a GPOS (Linux) in order to provide common non-
critical automotive applications (e.g., In-Vehicle Infotainment,
Vehicle-to-Everything, etc.), whereas the secure-world hosts a
SPOS (FreeRTOS), which handles mission critical applications
(e.g., an Instrument Cluster).

Before designing VOSYSVirtualNet, we first formulate a
number of requirements that must be fulfilled to properly
integrate it into the existing software stack. In the following
section, we discuss these requirements as well as the design
and the implementation of VOSYSVirtualNet.

A. System Requirements

When developing a new component for mission critical
applications, such as VOSYSmonitor, it is important to
design it in a way that it is minimally invasive since
formal evaluation processes (e.g. ISO26262) are lengthy
and complex. Therefore, new software components must be
integrated with care. In this context, our design decisions for
VOSYSVirtualNet are driven by the following aspects:



Fig. 2: Exemplary system architecture, with Linux hosting several non-critical applications in the non-secure world, and a
safety certified RTOS in the secure world hosting the mission critical instrument cluster. The network link, established by
VOSYSVirtualNet, allows to exchange data between both entities.

1) Low latency: It is important to emphasize at this point
that the key requirement of our architecture is to achieve a very
low latency via the virtual network link. Indeed, the critical
OS, running in the secure world, must be able to forward
information to the non-secure OS with a very low delay. Thus,
all our design decisions are build around this “low latency”
requirement.

2) Minimally invasive: Our goal is to make as few changes
as possible to all involved software components. Especially,
changes to both OSs, running on top of VOSYSmonitor, are
problematic, because source level access to the OS kernel is
not always guaranteed. But also changes to components where
source level access is possible can be problematic. The Linux
kernel for example is such a fast-evolving software project
and if the modifications can not be applied into the upstream
version, an external patch has to be maintained constantly.

But also changes to VOSYSmonitor should be considered
with care, because they have to comply to the ISO26262
specification, making the integration of complex code
modifications a lengthy process. Thus, our goal is to generate
only a minimal patch for VOSYSmonitor and for the Linux
kernel to make sure that the porting effort is kept to a
minimum (the specific numbers are given in Section III-B).

3) Small hardware requirements: The number of ARM-
based SoC is huge and each has different types and amount
of hardware peripherals. Therefore, our efforts are focused to
only utilize hardware resources that are available on all or at
least on a large fraction of ARM-based application processors.
Moreover, we only wanted to utilize a small number of these
hardware resources.

For the design of VOSYSVirtualNet, a form of signal-
ing mechanism is needed in order to notify the respective
world about new network packets. However, external IRQs
are arbitrarily assigned by the SoC manufacturers to specific
hardware peripherals. Therefore, we decided to use an SGI

(Software Generated Interrupt) for the VOSYSVirtualNet sig-
naling mechanism. Each ARM-based SoC equipped with a
GICv2 [20] interrupt controller has 16 SGIs (interrupt IDs
0 - 15). Although, the Linux kernel utilizes some of these
SGIs (e.g., core synchronization), there are still a number of
them left, and it is possible to use one for the signaling of
VOSYSVirtualNet.

4) Security & safety awareness: VOSYSVirtualNet is in-
tegrated into a safety critical environment, therefore it is
important that malicious or erroneous applications in the non-
secure world cannot influence critical components in the se-
cure world. To ensure this, we set a rate limit on how frequent
one component can signal the respective other component.
Also, several security considerations are taken into account (a
thorough discussion on this topic is conducted in Section V).

B. VOSYSVirtualNet design
In this section the design of VOSYSVirtualNet is described.

It relies on two memory buffers as well as the signaling
mechanism. Both aspects will be discussed in the following
sections.

1) Memory buffers: The network packets to be exchanged
are stored in two shared buffers. The buffers are placed in one
of the RAMs available to the system. In general, the placement
(allocation) of the buffers is specific to the system software
where VOSYSVirtualNet is implemented on. Still, a number
of requirements are platform agnostic.

First, due to the limited availability of fast SRAM on the
evaluation platform the buffers are allocated in the DRAM.
However, it is important to note that the type of RAM might
have a positive impact on the performance of VOSYSVir-
tualNet. Second, since we chose a simple message framing
protocol, the buffers have to be fully contiguous. We decided
against a scattered design (e.g., based on a linked list) to keep
the complexity low. But this means, the OS must provide
an API to allocate larger chunks of contiguous memory.
Finally, before VOSYSVirtualNet is operational, secure and



non-secure world exchange the location of the buffers during
a handshaking phase.

2) Signaling: Each entity has access to both buffers, one for
the transmission of packets and the other one for the reception.
In this context, one entity’s “receive buffer” is perceived as the
others entity’s “transmit buffer” and vice versa. The layout can
be obtained from Figure 3. As shown in the figure, each buffer
is preceded by a fixed management structure, which besides
holding two pointers (the TX pointer and the RX pointer) also
contains a flag to indicate the link status (up or down). The
receive buffer, along with its management structure, is solely
used to keep track of new data for reception. The transmit
buffer on the other hand is used to send new data.

Fig. 3: Layout of the buffers as perceived by both entities.

The RX pointer of each entity’s transmit buffer follows the
TX pointer of the other entity. If entity A writes new content
into its buffer, its TX pointer is adjusted. When entity B is
then scheduled, it observes its RX pointer and compares it to
the TX pointer in the receive buffer. If they differ, it means
new packets are waiting to be handled. In this example, both
TX pointers are ahead of the RX pointer, meaning there are
new packets available (represented by the hatched space in
each receive buffer).

For transmitting data, a simple framing protocol is used.
Each packet, which is stored in the buffer by one of the entities,
is prefixed with a 32 bit value, holding the size of the following
packet. So, when an entity wants to send new data, it first
copies the size of the packet to the current position of the
TX pointer in the transmit buffer. Then, it increments the TX
pointer by 4 Bytes. Afterwards, it copies the network packet
into the buffer and increments its TX pointer again by the size
of the packet. Depending on the position of the TX pointer,

either the driver directly invokes a signal to notify the other
world about new content in its buffer (if the TX pointer almost
reaches the end of the buffer) or it exits its sending routine
(if the TX pointer does not yet exceed the size of the transmit
buffer).

The invocation of the transmit signal generates a trap into
VOSYSmonitor, which will in turn set the according SGI
pending in the receiving world (secure or non-secure). Next
time the corresponding world is scheduled, it will immediately
trap the SGI into its exception handler in order to manage the
incoming interrupt. Then, the Interrupt Service Routine (ISR)
schedules a function that takes care of the packet handling. It
is important to note that, as described in Section III-A4, one
major system requirement is a rate limit for the invocation of
the packet handling. By not performing the packet handling
directly in the ISR, these operations are fully decoupled.

Once the receiver function is scheduled, it will compare its
RX pointer (in the transmit buffer) to the other entity’s TX
pointer (the one in the receive buffer). If they are different,
it means a new content is available to be forwarded to the
respective IP stack (see Figure 3). Finally, the receiver will
copy the individual packets into the IP stack and increment its
RX pointer (in the transmit buffer) accordingly.

C. Implementation

VOSYSVirtualNet is designed in a generic way and the
individual implementations decoupled from the architectural
design as much as possible. Of course, there are still several
design decisions that are unique or specific to a certain
software stack and/or OS. Therefore, the implementation pe-
culiarities specific to our chosen platforms are described in
this section.

As for the OS, Linux executes in the non-secure world,
while FreeRTOS [21] executes in the secure world. Linux
brings it’s own IP stack, which is used in our implemen-
tation. FreeRTOS on the other hand must be extended by
an external IP stack. But, under the name FreeRTOS+, the
FreeRTOS ecosystem provides a full TCP/IP stack called
FreeRTOS+TCP. The FreeRTOS+TCP stack requires the sys-
tem integrator to implement a number of low level functions
that enable the communication with the stack. These tasks
purpose are, e.g., putting the packets on the wire and obtaining
packets from the wire and forwarding them to the TCP/IP
stack.

a) Buffer implementation: The Linux kernel keeps tight
control over the physical main memory. So, we decided to
let Linux perform the allocation of the buffers. The network
communication is preceded with a handshake phase between
secure and non-secure world where the device driver in the
Linux kernel allocates the buffers through Linux’s kernel API
(kmalloc). Then, the addresses are translated from virtual to
physical addresses and forwarded to the secure world entity.

The buffers are allocated with the memory attribute
GFP_DMA in order to obtain contiguous (and also uncached)
memory from the memory allocator. When requesting memory
from the kernel allocator with the flag GFP_DMA, it forces the



Linux kernel to search for the amount of requested memory
in a contiguous block. Depending on the amount of physical
memory that is available to the system (our evaluation platform
features 1 GBytes of DRAM), the Linux kernel might not be
able to serve the request. In our current prototype, a size of
2 MBytes is chosen for each buffer1. Depending on the size of
the buffers, the network throughput and overall performance
of VOSYSVirtualNet increases or decreases.

b) Signaling implementation: As specified in Sec-
tion III-A, the changes to the Linux kernel should be kept
to a minimum. Invoking the receiver function of our driver is
the only modification to the Linux kernel we made. We did
not modify any other kernel subsystem or the Linux network
stack, except for the registration of an unused SGI handler
(kernel/smp.c), resulting in only 10 Source Lines of Code
(SLOC) to the Linux kernel tree. Of course the driver itself
consists of more lines of code (292 SLOC), but it is kept
off-tree and can be compiled against different Linux kernel
versions.

Another requirement is that the packet handling is fully
decoupled from the actual reception of the signaling SGI.
In an effort to reduce the number of interrupts when re-
ceiving a large number of network packets, the new Linux
network API, called “New API” (NAPI) provides means to
mitigate interrupts for networking devices in the Linux kernel.
Therefore, leveraging the NAPI and only calling the function
napi_schedule from the ISR implies a decoupled packet
handling. Linux will then later schedule the registered driver
function to handle the packet. In the actual handler function
implemented in the Linux driver, the network packets are
copied from the shared buffer into a Linux socket buffer. Then,
the function napi_gro_receive is invoked to pass the
packet into the Linux network stack.

On the FreeRTOS side, the network packet handling is
also decoupled from the ISR. The ISR wakes up a task by
calling vTaskNotifyGiveFromISR, which will later be
scheduled by the FreeRTOS scheduler to do the actual packet
handling. In the handler routine, the available network packets
are copied from the shared buffer into a FreeRTOS+TCP spe-
cific network buffer descriptor structure. Afterwards, the han-
dler routine invokes the xSendEventStructToIPTask
function to forward the packets to the IP stack.

IV. EVALUATION

To evaluate the feasibility of our approach, we performed
a set of latency as well as bandwidth benchmarks on the
ARM Juno Development Platform [22]. The latency bench-
marks were performed using the ping tool. The bandwidth
benchmarks were performed using the iperf tool (version
2.0.10). The tool ping was invoked with the parameter
-c200 (200 ICMP requests). The tool iperf was invoked
with the parameters -t400 -i2 (400 seconds test). We sent

1We experimented with different buffer sizes and determined it, to be an
appropriate value. The maximum amount of memory that could be obtained
from the Linux allocator is 8 Mbytes for each buffer. For bigger allocations,
the kmalloc call returned -ENOMEM.

the ping requests from Linux to FreeRTOS. For the bandwidth
tests we used an iperf server implementation on FreeRTOS
side and connected as a client from Linux. To have a base
line for our results, we performed the same benchmarks on a
comparable system architecture.

A. Test setup

As a reference systems, we chose a Linux/KVM setup,
because it is readily available in the Linux kernel and VMs
can easily be deployed using QEMU [23]. We set up three
different configurations of Linux/KVM.

1) Linux/KVM: Due to the nature of the safety architecture
(the secure OS executes on a single core), all Linux/KVM
benchmarks were also performed on a single CPU core.
The host Linux was booted with the parameter maxcpus=2
and both VMs pinned to the secondary CPU (“taskset
-c 1 ...”), leaving solely the host OS on the primary
CPU. The RAM available to both VMs was limited to
512 MBytes (“mem=512M”). Also, all power management
features were disabled in the Linux kernel (e.g. “CPU
Frequency scaling” or “CPU idle PM support”)
to make sure no frequency scaling or power management
feature would influence our measurements.

As for the network parameters, QEMU version 2.11.0
was used to spawn two VMs with three different network
backend configurations. In the host Linux, a layer 2 bridge
interface was created and the two tap devices from the guest
VMs attached to it, to form the network link. To enable the
recent VirtIO network backend “virtio-net-pci” [24],
Linux kernel version 4.14-rc1 was used for both, the
host as well as for the two guest VMs. The kernel
features CONFIG_VIRTIO_NET, CONFIG_VIRTIO_PCI,
CONFIG_VHOST and CONFIG_VHOST_NET were enabled
to leverage the backend.

Our Linux/KVM baseline configuration used the
QEMU parameter “-net nic,model=virtio -net
tap,...”. To obtain results for a setup with the VirtIO
PCI backend the following QEMU parameters were
used “-netdev type=tap,...” and “-device
virtio-net-pci,...”. Finally, for the VirtIO PCI +
VHost setup the first parameter was modified to “-netdev
type=tap,...,vhost=on”.

2) VOSYSVirtualNet: We integrated a prototype into the
following software components to evaluate the performance
of the VOSYSVirtualNet architecture. In the non-secure
world, the network driver was integrated into a Linux
kernel (version 4.0.0-rc7). Like, the Linux/KVM setups,
we set the parameter maxcpus=1 to limit the num-
ber of CPUs and the parameter mem=512M to limit the
RAM available to Linux to 512 MBytes. In the secure
world, the VOSYSVirtualNet driver was integrated into
FreeRTOS v9.0.0 (release 160919). FreeRTOS+TCP (release
160919) was used to provide a network stack in the se-
cure world. We used the heap implementation heap_4.c
in FreeRTOS with 32 MBytes of memory assigned to the
heap. Both buffer allocation strategies in FreeRTOS+TCP



TABLE I: Latency results for the evaluated architectures
(results are in milliseconds, lower is better).

Link Network Result Deviation
Linux VM/Linux VM VirtIO 0.911 1.31200
Linux VM/Linux VM VirtIO PCI 0.869 1.20400
Linux VM/Linux VM VirtIO PCI+VHost 0.705 1.42900

Linux/FreeRTOS VOSYSVirtualNet 0.173 0.00361

(BufferAllocation_1.c, BufferAllocation_2.c)
were explored. The first one allocates a fixed amount of net-
work buffer descriptors during initialization, whereas the other
allocates them on demand from the heap. But neither strat-
egy led to major performance gains nor degradations. Thus,
BufferAllocation_1.c was used with the variable
ipconfigNUM_NETWORK_BUFFER_DESCRIPTORS set to
10.

B. Benchmarks

In this section, we present the results from different latency
and bandwidth benchmarks. Each measurement was performed
on the previously discussed hardware/software setups.

The Linux/KVM configurations show overall average la-
tency results. For the general use-cases that are covered by
the virtual network link between two VMs these numbers are
sufficient. But taking a closer look, reveals that the results
show a very high deviation, which is not acceptable for
most “high-criticality” use-cases. The detailed latency results
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Fig. 4: Latency results.

(depicted in Figure 4), reveal that the Linux/KVM setups have
highly fluctuating packet arrival times. These spikes of greatly
increased latencies in regular intervals lead to the relatively
high average and also a high standard deviation (shown in
Table I).

The matter itself was not investigated any further, because
the increased latency interval pattern is different for every

Linux/KVM setup. The issue seems to be due to peculiarities
in the VirtIO implementations. With VOSYSVirtualNet, we
achieved a more consistent and also ∼2-3x lower latency.
This aspect is especially critical for a system built for the
automotive domain, since it handles mission critical data in
the SPOS, where low response times are crucial.

A comparison between the throughput results is depicted
in Figure 5. Here, the Linux/KVM setup clearly shows it’s
strength, with throughput values of up to ∼1.9Gbps with
VirtIO PCI and VHost enabled. Whereas VOSYSVirtualNet
achieves a bandwidth of ∼38Mbps in TCP mode. The reduced
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Fig. 5: Throughput results.

bandwidth in VOSYSVirtualNet is due to the scheduling
policy that is enforced in VOSYSmonitor. Whenever the SPOS
has work to perform, interrupts are masked for the GPOS, not
allowing it to send further packets. This is of course intended
behaviour and part of the security measures, that is enforced on
the network channel (and on the non-secure world in general)
by VOSYSmonitor.

Moreover, Linux/KVM with any VirtIO backends uses
Large Receive Offload (LRO) in the Linux kernel. This feature
enables the aggregation of multiple incoming packets from
a single stream into a larger buffer before they are passed
higher up the networking stack. This reduces the number of
packets that have to be processed. To improve the overall
performance of VOSYSVirtualNet with respect to throughput
we adapted the Maximum Transmission Unit (MTU) size. We
could perform this optimization because we fully control the
virtual network link, without the packets reaching a physical
link. When the packets are forwarded onto a real network link,
the Linux network stack takes care of cutting the network
packets once again.
When using a MTU size of 1500 Bytes (default in Linux)
the throughput is as low as ∼10 Mbps. An increased MTU
size of up to 65 kBytes leads to four times better throughput
results of up to ∼40 Mbps. However, the throughput gain does
not scale linearily, because bigger packets, take considerably
more handling time in the receiving world. The results can be
obtained from Figure 6. When increasing the MTU the time
the system spends in the receiving entity to handle the packet
increases. The error bars however indicate that even with a
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Fig. 6: MTU size and its impact on the achievable throughput
of VOSYSVirtualNet.

packet size of up to 65536 the time for the packet handling
can be as low as ∼2.7 ms but on some occasions can go up
to ∼15 ms.

V. SECURITY IMPLICATIONS & DISCUSSION

A communication between non-secure and secure world has
security implications. In this section, the most critical ones are
discussed, and how VOSYSVirtualNet can deal with them.
Although complex functionality (e.g., packet framing, sig-
naling, etc.) in the non-secure world is contained in a sys-
tem driver and therefore sealed away from malicious user
processes, an adversary, which manages to take over the
non-secure OS layer, can perform a number of attacks, and
undermine the spatial and/or temporal isolation enforced by
VOSYSmonitor.
Of course, it is important to note that the highlighted threats
can in the same way arise from a malicious or malfunctioning
component in the secure world.

A. Denial-of-Service

In general, a Denial-of-Service (DoS) attack describes a
scenario, where an adversary sends requests to a remote
endpoint at such a high rate that the receiver is only able to
serve the adversaries requests, without the ability to perform
any other task [25], [26]. In a worst case scenario, the receiver
completely shuts down due to, e.g., memory scarcity [27] or
CPU starvation [28].
A similar scenario can arise when two entities communicate
over a virtual network link (such as VOSYSVirtualNet). In-
deed, if one entity sends packets at a high rate, the receiving
entity might entirely be occupied by handling those requests.
Even though, the secure world has a higher priority than the
non-secure world, the non-secure world still might be able to
DoS the secure world. This is highly dependant on how the
priorities are set in the secure world. If, e.g., the IP stack runs
with a very high priority in the secure world the non-secure
world could fill the entire shared buffer with packets, then
the secure-world might only be occupied by processing these
packets without being able to perform any other task.

Countermeasure: To address this issue in VOSYSVirtualNet
neither of the two entities (secure and non-secure) performs
the packet processing directly in their respective ISR. Instead,

the ISR adds a task to the respective scheduling queue (in
Linux terminology called “tasklet”), which is later dispatched
by the systems regular scheduling policy to perform the actual
packet processing. The handling task has a lower priority
and can therefore be interrupted by critical processes on each
side. To decrease the severity of DoS attacks in the critical
OS even further, the priority of the task that contains the IP
stack can also be reduced. But, the selected priorities must be
adapted towards the characteristics of the system, the number
of concurrent tasks, and the importance of the virtual network
link.

Another counter measure is to limit the number of packets
that are processed during a scheduling period in the receiving
entity. This can be achieved by reducing the size of the “trans-
mit buffer” to an appropriate size or by introducing an artificial
value that interrupts the processing after n packets. The Linux
kernel’s NAPI already provides such a mechanism called
budget. Per invocation of napi_schedule a maximum
of budget packets are processed. The NAPI documentation
suggests a value of 64 for faster interfaces and a default of
16. Currently, VOSYSVirtualNet uses a conservative budget
value of 16, to limit the severity of DoS attacks, in favor
over raw performance. In FreeRTOS we implemented the same
mechanism limiting the number of packets that are processed
per invocation of the handler task.
Even though currently not implemented by VOSYSVirtual-
Net is a rate limiter directly embedded into VOSYSmonitor.
VOSYSmonitor would count the number of incoming smc
calls from either entity and dismiss them if they exceed a
certain number.

B. Packet corruption

Data parser components have to deal with unsanitized input
making them vulnerable to attacks [29], [30]. An IP stack is
no exception, parsing corrupted network packets (purposely
or unpurposely, due to, e.g., a corrupted user application) is
challenging and might lead to unpredictable behaviour at the
receiving entity. Depending on the robustness of the packet
parser of the IP stack, the attack might have a severe impact
on the availability of system software on the receiving side.
The attacks severity is further influenced by two aspects. First,
does the IP stack run with system privileges (as part of the OS
kernel) or as a user application that can be shutdown? Second,
is the IP stack a component in a vital part of the secure worlds
functionality or is it an extra component that in case of failure
can be shut down?

Countermeasure: Invoking the IP stack with corrupted
network packets is a common attack scenario and the IP
stacks on both sides should be robust enough to handle such
scenarios. However, several CVEs show that the Linux kernel
suffered from such an issue [31], [32] in the past. The same
vulnerability applies to the secure OS but the issue highly
depends on the used IP stack as well as on the used secure
OS.
Generally, it is advisable to run complex components, such
as an IP stack, in an isolated user application and not with



system privileges (even though this means a diminishing
return in terms of performance). FreeRTOS already follows
the microkernel [33] approach, running system components
in user tasks. Meaning, the FreeRTOS IP stack runs in a user
application, and thus limiting the impact of a crash or takeover
by an adversary.

C. Memory corruption

The non-secure component is responsible to allocate the
buffers as well as to populate their addresses to the secure
world. Granted that a malicious entity in the non-secure world
allocates the shared buffers just at the boundary to the secure
world (storing the management structure still in the non-secure
part of the memory), leaving the signaling intact but provoking
the secure world to overwrite parts of its own memory when
storing a network packet in the buffer.

Countermeasure: The countermeasures to overcome this
issue are however straight forward. By checking the location
of the secure memory and comparing it to the buffer locations
retrieved from the non-secure world, the secure world can
make sure to not disclose any security critical information,
or worse overwrite its own memory.
In the worst case, the virtual network link could not be
established, but security of the critical OS is not jeopardized.

VI. RELATED WORK

In the following section we present a number of topics,
which are relevant to this work. While, there has not been
a lot of research in the domain of inter-world (secure/non-
secure) communication, our architecture closely resembles a
virtualization architecture. Therefore, we focus our related
work towards research that optimizes a virtual link between
VMs (inter-VM communication).

Early work on the subject has been done by Wang et. al. [34]
in 2008. To improve the inter-VM communication speed in
Xen, they implemented XenLoop and achieved bandwidths of
∼4000 Mbps and latencies of ∼28 microseconds between two
VMs on a x86-based workstation (dual-core Intel Pentium D
2.8 GHz CPU, 4 GBytes of RAM).

In 2009, Burtsev et al. introduced Fido [35] an improved
inter-VM communication mechanism. The novelty of their
approach was to leverage the relaxed trust model between
two software components in an enterprise appliance to achieve
higher throughput rates. Indeed, their evaluation results sug-
gest high bandwidths by doubling the bandwidth result that
was achieved by Wang et al. with XenLoop. Their benchmarks
were performed on an high-end x86-based workstation (two
quad-core AMD Opteron 2.1 GHz CPUs, 16 GBytes of RAM)
and they achieved bandwidth results as high as ∼10000 Mbps
with a message size of 64 KBytes and latency results between
∼30 to ∼90 microseconds with different packets sizes.

Ren et al. [36] did an extensive study on the current
state of the art on Inter-VM communication. Their survey
compares the latest solution for the two most common open
source hypervisors Xen and Linux/KVM. Their measurements
are performed on a number of different hardware platforms,

ranging from a workstation grade machine with a 2.8 GHz
CPU, 4 GBytes of RAM up to, a server grade machine with
two quad core CPUs with 2.67 GHz and 48 GBytes of RAM.
On Linux/KVM, they achieved bandwidths of ∼6000 Mbps
with a solution called MemPipe [37] and ∼8000 Mbps with
XenLoop. Their outcomes are in line with the previous find-
ings and results from Burtsev et al. and Wang et al. They
however, do not provide absolute latency numbers, only setting
the different solution in a relative context.

VII. CONCLUSIONS

This paper raised the research question, whether a low-
latency virtual network link can be established between the
secure and non-secure world, connecting two software com-
ponents with different levels of criticality, while still being
resilient against manipulations from one of the entities. We
addressed the question by introducing VOSYSVirtualNet, a
virtual network link that enables communication between a
GPOS in the non-secure world and a SPOS in the secure
world. The solution is integrated into an existing software
stack that is based on a highly privileged component called
VOSYSmonitor, executing in EL3, which orchestrates the
communication process and ensures a fair assignment of
time to each entity. With a full prototype implementation
of VOSYSVirtualNet and a number of latency benchmarks
we proved its feasibility and verified our design. To make it
resilient against attacks we integrated a number of counter-
measures into our design in order to ensure a proper spatial
and temporal isolation, while the virtual network link is up.

VIII. FUTURE WORK

A network link established with VOSYSVirtualNet provides
a low latency, which is the main goal of our architecture.
However, VOSYSVirtualNet can be extended by a number of
aspects in the future.

For the demonstrator, we choose FreeRTOS as a SPOS
running in the secure world. But, the integration of our design
into a fully AUTOSAR [38] compliant SPOS still stands out.

Also, the use-cases that were driving our design deci-
sions had low-latency requirements, whereas the bandwidth
requirements were neglectable. Currently, our prototype of
VOSYSVirtualNet achieves a bandwidth of ∼38Mbps (mea-
sured with IPerf). But, it is important to note, that the
implementation in the secure world is very OS specific, and
has to adhere to the scheduling peculiarities of FreeRTOS.
Tests with increased MTU sizes already suggest that higher
bandwidth results can be achieved in the current setting. Also
utilizing the LRO, which is already present in VirtIO is future
work.
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